Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhen-Zhong Lu, Shan Gao,* Li-Hua Huo, Xi Zhang, Hui Zhao and Jing-Gui Zhao

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.083$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaqua(nitrato- $\left.\kappa^{2} O, O^{\prime}\right)$ bis(4-pyridone- κO)cobalt(II) nitrate

In the title complex, $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)$, the Co atom exists in an octahedral environment, defined by four O atoms of two 4-pyridone ligands and a chelating nitrate ion, as well as two water molecules. The Co atom and two nitrate ions lie on special positions with twofold rotation symmetry. A three-dimensional network structure is formed by intermolecular hydrogen bonds and $\pi-\pi$ interactions.

Comment

4-Hydroxypyridine has been widely used in pharmaceutical synthesis. However, the reported crystal structures of metal complexes with 4-hydroxypyridine or its tautomer, 4-pyridone, are rare (LaliaKantouri, 1996; Masse \& Le Fur, 1998). Recently, we reported the structure of a complex, $\left[\mathrm{CoCl}_{2}-\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ON}\right)_{2}\right]$, in which the Co atom shows a tetrahedral geometry (Gao et al., 2004). In order to explore the effects of the counter-ions on the coordination geometry of the metal center, we used $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ hexahydrate instead of CoCl_{2} hexahydrate in the reaction and synthesized a novel cobalt complex, $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)$, (I), the crystal structure of which is reported here.

(I)

As shown in Fig. 1, the crystal structure of (I) consists of a $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$cation and an $\mathrm{NO}_{3}{ }^{-}$anion. The uncoordinated $\mathrm{NO}_{3}{ }^{-}$anion forms an intermolecular hydrogen

Figure 1

ORTEPII (Johnson, 1976) plot of (I), shown with 50% probability ellipsoids. [Symmetry code as in Table 1.]

Received 27 April 2004 Accepted 12 May 2004 Online 22 May 2004

Figure 2

Packing diagram of (I).
bond with a water molecule, with an $\mathrm{O} \cdots \mathrm{O}$ distance and $\mathrm{O}-$ H. . O angle of 2.806 (2) \AA and 166 (2) ${ }^{\circ}$, respectively. The Co atom and two nitrate ions lie on crystallographic twofold rotation axes. The Co atom has a slightly distorted octahedral geometry. Its equatorial plane is defined by two nitrate O atoms $[\mathrm{Co}-\mathrm{O}=2.193(1) \AA$] and two carbonyl O atoms of 4-pyridone ligands $[\mathrm{Co}-\mathrm{O}=2.035$ (1) $\AA]$, while the axial sites are occupied by two water molecules $[\mathrm{Co}-\mathrm{O}=2.060(1) \AA$ and $\left.\mathrm{O}-\mathrm{Co}-\mathrm{O}=175.97(8)^{\circ}\right]$. The $\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{C} 3-$ O1 bond lengths are 1.369 (3), 1.361 (3) and 1.287 (2) Å, respectively (Table 1). The dihedral angle between the planes of the coordinated nitrate ion and the pyridone ring is 28.26 (8) ${ }^{\circ}$. Individual molecules are stacked in an offset manner along the c direction through $\pi-\pi$ interactions of adjacent pyridone ligands, with a plane-to-plane separation of 3.866 (3) A. Furthermore, $\mathrm{O}($ water $)-\mathrm{H} \cdots \mathrm{O}$ (pyridone) and N (pyridone) $-\mathrm{H} \cdots \mathrm{O}$ (nitrate) intermolecular hydrogen bonds lead to a three-dimensional network (Table 2 and Fig. 2).

Experimental

The title complex, (I), was synthesized by the addition of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ to an ethanol solution of 4-hydroxypyridine (3 mmol). The mixed solution was allowed to evaporate at room temperature and pink prismatic crystals of (I) were isolated from the solution after about 7 d . Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{CoN}_{4} \mathrm{O}_{10}$: C $29.35, \mathrm{H} 3.45, \mathrm{~N} 13.69 \%$; found: C 29.53 , H 3.38, N 13.55%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)$	$D_{x}=1.684 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=409.18$ Monoclinic, $C 2 / c$
$a=14.842(3) \AA \AA$	Mo $K \alpha$ radiation
$b=14.166(3) \AA$	Cell parameters from 2419
$c=7.721(2) \AA$	reflections
$\beta=96.23(3)^{\circ}$	$\theta=4.4-27.5^{\circ}$
$V=1613.8(6) \AA^{3}$	$\mu=1.13 \mathrm{~mm}^{-1}$
$Z=4$	$T=293(2) \mathrm{K}$
	Prism, pink
	$0.38 \times 0.25 \times 0.18 \mathrm{~mm}$

$D_{x}=1.684 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2419 reflections
$\theta=4.4-27.5^{\circ}$
$\mu=1.13 \mathrm{~mm}^{-1}$
Prism, pink
$0.38 \times 0.25 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.674, T_{\text {max }}=0.823$
7588 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.083$
$S=1.08$
1838 reflections
125 parameters
H atoms treated by a mixture of independent and constrained refinement

1838 independent reflections
1710 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-19 \rightarrow 19$
$k=-18 \rightarrow 14$
$l=-9 \rightarrow 10$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0484 P)^{2} \\
&+1.1983 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.61 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1$	$2.035(1)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.287(2)$
$\mathrm{Co} 1-\mathrm{O} 1 W$	$2.060(1)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.369(3)$
$\mathrm{Co} 1-\mathrm{O} 2$	$2.193(1)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.361(3)$
O1 $W-\mathrm{Co} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$175.97(8)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1 W^{\mathrm{i}}$	$91.58(6)$
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 2$	$84.97(6)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2^{\mathrm{i}}$	$106.08(5)$
O1-Co1-O1 ${ }^{\mathrm{i}}$	$89.40(8)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$	$164.14(6)$
O1-Co1-O1 W	$91.28(6)$		
Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.			

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\text {ii }}$	$0.85(2)$	$1.88(3)$	$2.722(2)$	$175(3)$
O1 $W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 4$	$0.84(2)$	$1.98(3)$	$2.806(2)$	$166(2)$
N1-H6 $\cdots \mathrm{OF}^{5 i}$	$0.90(3)$	$2.10(3)$	$2.974(2)$	$166(3)$

Symmetry codes: (ii) $1-x, 1-y,-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}+y, 1+z$.

C-bound H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ (aromatic) and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ in the riding-model approximation. H atoms on nitrogen and of water were located in difference Fourier synthesis maps and refined with $\mathrm{N}-\mathrm{H}, \mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of $0.90(1), 0.85(1)$ and $1.39(1) \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N}, \mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), the Educational Committee Foundation of Heilongjiang Province and Heilongjiang University.

metal-organic papers

References

Gao, S., Lu, Z.-Z., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m609-m610.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

LaliaKantouri, M. (1996). Transition Met. Chem. 21, 491-493
Masse, R. \& Le Fur, Y. (1998). Z. Kristallogr. New Cryst. Struct. 213 114.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany

